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We study the dc Josephson effect in a diffusive multilayered SF�FF�S structure, where S is a superconductor
and F and F� are different ferromagnets. We assume that the exchange energies in the F� and F layers are
different �h and H, respectively� and the middle F layer consists of two layers with parallel or antiparallel
magnetization vectors M. The M vectors in the left and right F� layers are generally not collinear to those in
the F layer. In the limit of a weak proximity effect we use a linearized Usadel equation. Solving this equation,
we calculate the Josephson critical current for arbitrary temperatures, arbitrary thicknesses of the F� and F
layers �Lh and LH� in the case of parallel and antiparallel M orientations in the F layer. The part of the critical
current IcSR formed by the short-range singlet and S=0 triplet condensate components decays on a short length
�H=�D /H, whereas the part IcLR due to the long-range triplet �S�=1 component decreases with increasing LH

on the length �N=�D /�T. Our results are in a qualitative agreement with the experiment �T. S. Khaire, M. A.
Khasawneh, W. P. Pratt, Jr., and N. O. Birge, Phys. Rev. Lett. 104, 137002 �2010��.
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I. INTRODUCTION

According to the Bardeen, Cooper, and Schrieffer1 theory
of superconductivity in conventional metals and their alloys
the superconducting condensate consists of singlet Cooper
pairs. These pairs can be described by a wave function f
which is in the absence of the condensate flow symmetric in
the momentum space �s-wave singlet pairing�. In terms of
the creation and annihilation operators �+ and �, this func-
tion can be represented in the form of a thermodynamic av-
erage fsng�t− t�����↑�t��↓�t��−�↓�t���↑�t�	. At equal times
�t= t�� this function determines the order parameter � :�
=���↑�t��↓�t�	=−���↓�t��↑�t�	, where � is the coupling con-
stant of an attractive interaction. The spin-independent scat-
tering by ordinary impurities does not affect this type of
superconductivity �Anderson theorem�.2

In the last two decades other types of superconductivity
have been discovered. The most important example is high
Tc superconductivity discovered by Bednorz and Müller3 in
cuprates.

As a result of intensive study of these superconductors, it
was demonstrated that, although the Cooper pairs in this case
are also singlet, their wave function essentially depends on
the momentum p and changes sign with varying momentum
direction in CuO planes. In the simplest version, the depen-
dence of the order parameter � on p has the form: ��p�
=�0�cos2�pxax�−cos2�pyay�� �d-wave singlet pairing�. Such a
dependence ��p� allows one to construct the so-called
�-Josephson junction consisting of single crystals of high-Tc
superconductors with an appropriate orientation of these
crystals with respect to each other.4,5 The ground state of this
junction corresponds to the phase difference equal to �.

Another type of superconductivity �triplet� has been dis-
covered in strontium ruthinate Sr2RuCu4 �Refs. 6 and 7� and
in heavy-fermion intermetallic compounds.8 In contrast to
the singlet superconductivity, the wave function of the Coo-
per pairs f↑↑�p+p� , t− t�����↑�p , t��↑�p� , t��	 is an odd

function of momentum p, so that for equal times t= t� the
function f↑↑�p ,0� and the order parameter ��p� do not equal
to zero �p-wave triplet pairing�. Only for some directions of
the momentum p the order parameter turns to zero. This
means that, in agreement with the Pauli principle, the pair
wave function changes sign under permutation of spins and
momenta. The momentum dependence of the condensate
function makes the singlet d-wave and triplet p-wave super-
conductivity sensitive to scattering even by potential �not
acting on spin� impurities.

An unusual mechanism of superfluidity was proposed by
Berezinskii.9 Having in mind liquid He3, he considered a
retarded interaction between atoms and assumed that the or-
der parameter ���� and the wave functions f↑↑�p ,�� or
f↓↓�p ,�� in the Matsubara representation were even func-
tions of momentum but odd function of the Matsubara fre-
quency �. However, experiments on superfluid He3 revealed
that the p-wave triplet type of the superfluidity is realized in
He3 rather than the one proposed by Berezinskii.10,11 Some
possibilities to realize the exotic Berezinskii-type mechanism
of superconductivity in various systems in context of the
pairing mechanism in high-Tc superconductors were consid-
ered in Refs. 12–14.

This exotic type of superconductivity �or superfluidity�
was regarded for quite a long time as a hypothetical one.
Only recently it has been realized15 that the odd triplet su-
perconductivity might exist in a simple SF bilayer system
consisting of a conventional s-wave singlet BCS-type super-
conductor S and a ferromagnetic layer F with a nonhomoge-
neous magnetization M.

To that moment it had already been well known that in an
SF system with a homogeneous magnetization M the Cooper
pairs penetrated the ferromagnet over a short length �F

=�D /Eex �in the diffusive limit�, where D=vl /3 is the diffu-
sion coefficient, l=v� is the mean free path, and Eex is the
exchange energy in the ferromagnet �we set the Planck con-
stant 	 equal to 1�. Since the exchange energy usually is
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much larger than the critical temperature of the supercon-
ductor Tc, the length �F is much shorter than the length of the
condensate penetration into a normal metal in an SN bilayer:
�N=�D /�T .15–19

The Cooper pairs penetrating the ferromagnet with an uni-
form magnetization consist of electrons with opposite spins.
Their wave function is, however, the sum of a singlet and
triplet components with zero total spin projection on the z
axis �S=0�. The exchange field mixes these components and
the triplet component with S=0 is unavoidable in the ferro-
magnet. The sum of these two components can be considered
as a short-range component �SRC�.

The part corresponding the triplet S=0 component has the
form f tr↑↓�t− t�����↑�t��↓�t��+�↓�t���↑�t�	. At equal times
t= t� this function equals zero in agreement with the Pauli
principle. Therefore the function f tr↑↓�t− t�� is an odd func-
tion of the time difference �t− t�� or � in the Matsubara rep-
resentation. The order parameter in the superconductor S is
related only to the singlet function fsng��� which is an even
function of �. The superconducting order parameter in F is
zero if the coupling constant �F in the Cooper channel equals
zero.

The situation changes if the magnetization orientation in
the vicinity of the SF interface is not fixed. This case was
analyzed in Ref. 15, where an SF bilayer with a domain wall
�DW� located at the SF interface was considered. It was
shown that in such a system not only the singlet and triplet
S=0 components but also the odd triplet component with S
= 
1 arises in the ferromagnet. The latter component pen-
etrates the superconductor over a large distance that does not
depend on the exchange field and is of the order �N provided
the spin-dependent scattering is not too strong.

This odd triplet component can be considered as the long-
range triplet component �LRTC�. As the LRTC is symmetric
in the momentum space, the scattering by potential impuri-
ties does not affect this component.

In subsequent theoretical papers various types of SF struc-
tures where the LRTC may arise were studied �see review
articles17–19 and references therein�. In Ref. 15 the creation of
the LRTC is predicted in a diffusive SF structure with a
Bloch-type DW. The width of the DW, w, was assumed to be
larger than the mean free path l : l� 
w ,�F�.

A more general case of the DW with a width, arbitrary
with respect to the mean free path, in a SF structure with an
arbitrary impurity concentration was studied in Ref. 20. The
LRTC in diffusive SF structures with a Neel-type DWs has
been analyzed in Ref. 21. The case of a half-metallic ferro-
magnet in SF or SFS structures was investigated in Refs.
22–24. Braude and Nazarov25 studied the LRTC in SF struc-
tures with a highly transparent SF interfaces so that the am-
plitude of the condensate functions induced in the ferromag-
net was not small �strong proximity effect�. Ballistic SF
structures with a nonhomogeneous magnetization, where the
LRTC could be created, were studied in Refs. 22 and 26–28.
The papers29–32 were devoted to the study of the LRTC in
spiral ferromagnets attached to superconductors.

In several papers22,23,33–35 the LRTC was investigated in
SF structures with the so-called spin-active interfaces. In the
approach used in these papers, the properties of the SF inter-
face are characterized by a scattering matrix with elements

considered as phenomenological parameters. In this ap-
proach one does not need knowing the detailed structure of
the SF interface and can proceed calculating physical quan-
tities using these parameters. We will see that even in the
framework of the quasiclassical theory one can obtain effec-
tive boundary conditions for the LRTC provided the width of
the DW w attached at the SF interface is thin enough �such
an approach was used in Ref. 20�. From the physical point of
view the region with a narrow DW can be regarded as a
spin-active SF interface. If the width w is comparable with
the Fermi wavelength, one has to go beyond the quasiclassi-
cal theory and derive the boundary conditions from the first
principles �see Ref. 36 as well as Refs. 34 and 37 and refer-
ences therein�.

By now, several papers presenting a quite convincing ex-
perimental evidence in favor of the existence of the LRTC
have been published.38–41 In Ref. 38 the conductance of a
spiral ferromagnet �Ho� attached to two superconductors was
measured. It was concluded that the conductance variation
below the superconducting critical temperature Tc is too
large to be explained in terms of the singlet component.
Keizer et al.39 observed the Josephson effect in an SFS junc-
tion with a half-metallic ferromagnet CrO2. The thickness of
the F layer was much larger �up to �1 mkm� than the pen-
etration depth of the short-range condensate components.
Moreover, in the metal where free electrons with only one
spin direction are allowed, no pairs with opposite spins are
possible. Therefore, only triplet �S�=1 component can sur-
vive in this ferromagnet.23 However, there is no controllable
parameter in this system that would allow one to change the
amplitude of the LRTC. A similar long-range Josephson ef-
fect in a SFS junction with a ferromagnetic layer was ob-
served by Anwar et al. in a recent work.41

Recently the dc long-range Josepshon effect has been ob-
served in a more complicated SFS structure with a control-
lable parameter.40 In the experimental setup of this work, F
was not a single ferromagnetic layer but a multilayered struc-
ture of the NF�NFNF�N type, where N is a nonmagnetic
metal, F� is a weak ferromagnet �PdNi or CuNi�, and F is a
strong ferromagnet �Co�. The middle F layer was in its turn a
trilayer structure consisting of two F layers with antiparallel
orientation of magnetization M and of a thin layer �Ru� that
provides Ruderman Kittel Kasuya Yoshida coupling between
the F layers.

The authors of Ref. 40 measured the Josephson critical
current Ic for different thicknesses L of the F� and F layers
�we denote the thicknesses of the F� and F layers as Lh and
LH layers, respectively�. It was demonstrated that in the ab-
sence of the F� layers �Lh=0� the critical current Ic was neg-
ligible if the width of the F layer LH essentially exceeded the
small length �H=�D /H, where H is the exchange energy in
the F layer. This is what one expects for the conventional
superconductivity. However, adding the F� layers resulted in
an increase in the critical current Ic by several orders. The
dependence of Ic�Lh� is nonmonotonous: the critical current
is small at small and large Lh reaching a maximum at Lh
��h.

The authors of Ref. 40 suggested an explanation of these
results in terms of the LRTC. Note that the mean free path l
in the structure studied in Ref. 40 is rather short �the diffu-
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sive limit in the F� layers and an intermediate case in the F
layer�.

Theoretically the dc Josephson effect in multilayered SFS
junctions with a noncollinear magnetization orientation has
been studied in several works. In Refs. 26 and 42 the Joseph-
son current in ballistic SFS junctions was calculated. The
diffusive SFF’s junctions were considered in Refs. 43 and
44. However the long-range Josephson effect in the junctions
with two F layers is not possible; the Josephson critical cur-
rent Ic is not exponentially small only if the total thickness of
the ferromagnetic layer, LF+LF�, is comparable with the
short-length �F : Ic�exp�−�LF+LF�� /�F�.

The diffusive Josephson junctions with three ferromag-
netic layers and noncollinear M orientation, where the long-
range Josephson coupling may exist, have been analyzed in
Refs. 45 and 46. The authors of Ref. 45 considered the
F�SFSF� structure with different magnetization M orienta-
tions in the F and F� layers. In Ref. 46 a somewhat different,
but more suitable for experimental realization, SF�FF�S
structure with different M directions in the F and F� parts
was analyzed. In both papers the exchange energy in the F
and F� was assumed to be equal.

The amplitude of the LRTC, f1, and the Josephson critical
current due to this component IcLR are calculated in both
works. Although the structures studied in Refs. 45 and 46 are
different, the results obtained are similar. The final formula
for the critical current can be written in both the cases as

IcLR = F�Lh�sin �l sin �r. �1.1�

In Eq. �1.1�, �l,r are angles between the z axis and the
magnetization vectors in the left �right� F� layers, while the
magnetization M in the F layer is assumed to be parallel to
the z axis. The function F�Lh� is a nonmonotonic function
with a maximum at Lh��h. This function vanishes at small
and large thickness Lh of the F� layers �see Eq. �12� in Ref.
45 and Fig. 2 in Ref. 46�.

Qualitatively, this prediction agrees with the observations
in Ref. 40. However, experimental parameters presented in
this publication are well defined and this makes a more de-
tailed comparison of the theoretical predictions for LTRC
with the experimental results quite interesting.

In this paper we analyze an SF�FF�S structure which, be-
ing formally similar to that considered by Houzet and
Buzdin,46 is in many respects different and closer to the
structure studied experimentally. First, unlike Ref. 46, we
assume that the exchange energies in the F� and F layers
�h an H, respectively� are different.

Second, we assume that the SF� interface is not perfect
and the proximity effect is weak. This assumption allows us
to linearize the Usadel equation and to calculate the critical
Josephson current Ic at any temperatures T �in Ref. 46 only
the case of temperatures close to Tc was considered�.

Third, we also analyze the case when the F layer consists
of two domains with parallel and antiparallel orientations of
magnetization. At last, we derive a formula for the current Ic
for arbitrary thicknesses, Lh,H, of the F� and F layers �in Ref.
46 a formula for Ic is presented only in the limit Lh /�h�1�.

The paper is organized as follows. In Sec. II we formulate
the problem and write down necessary equations. In Sec. III

we analyze the case of thin F� layers �Lh /�h�1�. We calcu-
late the amplitudes of the short-range singlet and triplet S
=0 components as well as the LRTC. In Sec. IV the case of
arbitrary lengths Lh,H will be considered under assumption
that the angles �l,r are small. Using the formulas obtained for
the amplitudes of different components, we calculate in Sec.
V the critical current Ic in the limiting cases: �a� for parallel
and antiparallel M orientations in the F layer and for arbi-
trary angles �l,r assuming that the thickness Lh is small, �b�
for arbitrary Lh,H under assumption of small �l,r. The results
obtained are discussed in Sec. VI.

II. MODEL AND BASIC EQUATIONS

We consider a multilayer S/F Josephson junction shown
schematically in Fig. 1. It consists of two superconductors, S,
and three ferromagnetic layers F, Fr,l� . The middle F layer
may consist of two domains or layers with parallel or anti-
parallel orientations of the magnetization M. A similar Jo-
sephson junction has been studied experimentally in a recent
work.40

The presence of normal N layers in the experimental
S /NFlNFNFrN /S structures cannot change qualitatively the
results for the S /Fl�FFr� /S structure obtained here because the
scattering in the N layers does not depend on spin �if a weak
spin-orbit scattering can be neglected�. Therefore, all the su-
perconducting components, singlet and triplet, decay in the
N layers in a similar way over a large distance of the order
�N. The exchange fields acting on electron spins are h in the
F� layers and H in the middle F layer. The magnetization
vector M in F is supposed to align along the z axis and it has
the components M�0,sin �l,r , cos �l,r� in the Fl,r� layers. The
magnetization in the F layer is oriented along the z axis but
may have parallel or antiparallel orientations in the regions
�−LHx0� and �0xLH�.

For explicit calculations we use the quasiclassical Green’s
function technique, which is the most efficient tool for study-
ing SF structures �see reviews10,17,18,47–50�, and assume that
all the ferromagnetic layers are in the diffusive regime, so
that the Usadel equation can be used. The amplitude of the

FIG. 1. �Color online� Josephson structure under consideration.
The F� �F� layers are weak �strong� ferromagnets. The middle F
layer consists of two layers with parallel or antiparallel �shown in
figure� magnetization orientation. The arrows show the directions of
the magnetization in F� and F layers.
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condensate wave function in the ferromagnetic layers is as-
sumed to be small �weak-proximity effect� and therefore the
Usadel equation can be linearized. The smallness of the con-
densate wave function is either due to a mismatch of the
Fermi velocities in S and F or due to the presence of a tunnel
barrier at the S/F interfaces.

The anomalous �Gor’kov� quasiclassical Green’s function
in the considered case of a spin-dependent interaction is a

4�4 matrix f̌ . We are interested in the dc Josephson current
Ic, i.e., in a thermodynamical quantity. Therefore we can use

the Matsubara representation for the matrix f̌ and consider f̌
as a function of the Matsubara frequency �=�T�2n+1� and

coordinate x normal to interfaces: f̌ = f̌�� ,x�. The linearized

Usadel equation for f̌ has the form �see,18 Eq. �3.15��

�2 f̌/�x2 − ��
2 f̌ − i��F

2 /2�cos ��x�
tan ��x��̂3 � ��̂2, f̌�

+ ��̂3, f̌�+� = 0, �2.1�

where ��
2 =2��� /D, �F

2 =2 sgn � ·h /D in the Fl,r� layers and
�F

2 =2 sgn � ·H /D in the F layer, the Pauli matrices �̂i and �̂i
operate in the particle-hole and spin space, respectively. The
angle � is equal to �l,r in the Fl,r� layers and to zero in the F
layer in the case of the parallel orientation of the magnetiza-
tion M in the domains. In the case of the antiparallel orien-
tation ��x�=� in the interval �−LHx0� and ��x�=0 in
the interval �0xLH�. The diffusion coefficient D is as-
sumed to be the same in all the ferromagnetic layers.

The matrix f̌ can be represented for the system under
consideration in a form of an expansion in the spin matrices
�̂i as

f̌ = f̂0 � �̂0 + f̂1 � �̂1 + f̂3 � �̂3. �2.2�

The matrices �̂0 and �̂1,3 are the unit matrix and the �̂x,z

Pauli matrices, respectively. The f̂0,1,3 matrices are matrices
in the particle-hole space. The first term is the short-range
triplet component with the zero projection of the total spin
on the z axis, the second term is the LRTC with the nonzero
projection of the total spin, and the third term is the singlet
component of the condensate Green’s function �see Refs. 18
and 45�.

Equation �2.1� should be complemented by boundary con-
ditions. We consider the simplest model of the S/F hetero-
structures assuming that the interfaces have no effect on
spins �spin-passive interface�. These boundary conditions
have the form51,52

� f̌/�x�x=
L = 
 �Bf̌S�x=
L, �2.3�

where �B=1 / �RB�� ,RB is the S/F interface resistance per
unit area, � is the conductivity of the ferromagnet. The ma-

trix f̌ S is the Gor’kov’s quasiclassical Green’s function in the
left and right superconductors. It has the form

f̌ S�x=
L = fS�̂3 � ��̂2 cos � 
 �̂1 sin �� , �2.4�

where fS=� /��2+�2, 
� is the phase in the right �left�
superconductor, so that the phase difference is 2�.

If there is a spin-dependent interaction in a thin layer at
the interface �exchange field, spin-dependent scattering, etc�,
the boundary condition acquires a more complicated form. In
particular, the coefficient �B becomes a matrix with matrix
elements containing very often unknown phenomenological
parameters. Such interfaces are called spin-active interfaces.
In many papers the LRTC is studied in SF systems with
spin-active interfaces.22–24,34,35

The F /Fl,r� interfaces are assumed to be ideal and therefore

the function f̌�x� and its derivative � f̌ /�x must be continuous
at these interfaces. Solving the linear Eq. �2.1� with the
boundary conditions in Eq. �2.3� one can calculate the dc
Josephson current using the formula18,19

jJ = ��/8�2�T �
��0

Tr
�̂0 � �̂3 f̌ � f̌/�x� . �2.5�

This problem can be solved in a general case of an arbi-
trary thicknesses of the F and F� layers �LH and Lh� and
angles �l,r. However, the general results are too cumber-
some. In order to present analytical formulas in a more or
less compact form, we consider two limiting cases: �a� thin
Fl,r� layers �Lh��h ,�N� and arbitrary angles �r,l, �b� arbitrary
thicknesses LH and Lh, but small angles �r,l ���1�. In the
next section we consider the case �a�.

III. THIN F� LAYERS

In this section we assume that the Fl,r� layers �or h layers�
are very thin so that the inequality ��h�Lh�1 is satisfied,
where �h

2=2 sgn ��h /D� �usually �h��N=��T /D and
therefore the condition �NLh�1 is also fulfilled�. In the zero-
order approximation in the parameter �hLh, the exchange
field in the entire ferromagnetic region except the thin Fl,r�

layers is homogeneous and equal to H. Thus, only the f̂0,3
components in the expansion Eq. �2.2� that describe the
SRCs differ from zero.

The matrix f̌ satisfies the equation

�2 f̌/�x2 − ��
2 f̌ − i�H

2 cos ��x��̂3 � f̌ = 0, �3.1�

where �H
2 =2 sgn ��H /D�.

The angle ��x�=0 in the case of parallel orientation of the
vector M, and ��x�=0 at x�0, ��x�=� at x0 in the case
of antiparallel orientation. We rewrite Eq. �3.1� for the diag-

onal in spin space components f̂
= f̂0
 f̂3 as

�2 f̂
/�x2 − �

2 f̂
 = 0, x � 0, �3.2�

�2 f̂
/�x2 − �̂̄

2 f̂
 = 0, x  0, �3.3�

where �

2 =��

2 
 i�H
2 , �̂̄


2 =�

2 in the case of the parallel M

orientation in both domains �x�0 and x0� and �̂̄H
2

=��
2 � i�H

2 if the magnetization vector at x0 changes sign
with respect to its direction at x�0. The boundary condi-

tions for matrices f̂
 follow from Eq. �2.3�

� f̂
/�x = 
 �BfS��̂2 cos � + �̂1 sin �� ,

x = LH, �3.4�
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� f̂
/�x = � �BfS��̂2 cos � − �̂1 sin �� ,

x = − LH. �3.5�

The solution of Eqs. �3.2� and �3.3� can be sought in the form

f̂
�x� = Â
 cosh��
x�cos � + B̂
 sinh��
x�sin � ,

x � 0, �3.6�

f̂
�x� = Â̄
 cosh��̄
x�cos � + B̂̄
 sinh��̄
x�sin � ,

x  0. �3.7�

The relations between coefficients Â, Â̄ and B̂, B̂̄ should

be found from the continuity of the matrices f̂
�x� and their

derivatives � f̂
 /�x at x=0. This gives: Â= Â̄, �HB̂= �̄HB̂̄. Us-
ing the boundary conditions in Eqs. �3.4� and �3.5�, we find

the coefficients Â
 and B̂


Â
 = 

�B

D


� f̂ S�LH�cosh �̄
 + f̂ S�− LH�cosh �
� ,

B̂
 = 

�B

D

 f̂ S�LH�

�̄


�


sinh �̄
 − f̂ S�− LH�sinh �
� ,

�3.8�

where D
=�
 sinh �
 cosh �̄
+ �̄
 sinh �̄
 cosh �
, �


=�
LH, and �̄
= �̄
LH.
In the case of parallel �P� and antiparallel �AP� orienta-

tions of the magnetization in the F layer we obtain the func-
tion D


D
P = 2�
 sinh �
 cosh �
,

D+AP = D−AP = 2 Re��+ sinh �+ cosh �−� . �3.9�

One can see from Eqs. �3.6�–�3.8� that the SRC decays ex-
ponentially away from the SF interfaces over the short length
�H. Indeed, at �LH−x���H we obtain from Eqs. �3.6�–�3.8�
that f̂
�x����B /�
�fS��̂2 cos �+ �̂1 sin ��exp�−�LH−x� /�H�.

Let us now find the LRTC. First, we obtain the effective
boundary conditions for this component. Assuming that Lh
��h, we can integrate Eq. �2.1� over the thickness of the F�
layers and come to effective boundary conditions for the trip-
let component

�F̂1/�x�x=
LH
= 
 �1 f̂3�
LH�sin �r,l, �3.10�

where �1��h
2Lh.

We have introduced in Eq. �3.10� a matrix F̂1= �̂3 � f̂1

describing the LRTC. This matrix F̂1 satisfies an equation
that directly follows from Eq. �2.1�

�2F̂1/�x2 − ��
2 F̂1 = 0. �3.11�

The solution for the matrix F̂1 can be written as

F̂1 = Â1 cosh���x� + B̂1 sinh���x� . �3.12�

From the effective boundary conditions in Eq. �3.10� we find

Â1 =
�1

2�� sinh ��

� f̂3�LH�sin �r + f̂3�− LH�sin �l� ,

B̂1 =
�1

2�� cosh ��

� f̂3�LH�sin �r − f̂3�− LH�sin �l� .

�3.13�

where �1=2 sgn ��h /D�Lh, i.e., the matrix F̂1 is an odd
function of the Matsubara frequency.

The solution for F̂1, Eq. �3.12�, demonstrates that the

LRTC described by the function F̂1 decays slowly at a large

distance of the order ��
−1��N. The matrix f̂3 in Eq. �3.13� is

expressed through f̂
 : f̂3= � f̂+− f̂−� /2, where the matrices

f̂
�
LH� are given by Eqs. �3.6�–�3.8�.
As it should be, the function F̂1�x� turns to zero in the

absence the exchange field or in the case of collinear mag-
netization because �1=�h

2Lh�h and sin �r,l=0 in the case of
collinear M orientations.

Equations �3.6�–�3.8�, �3.12�, and �3.13� determine all the
condensate Green’s functions. Using these functions, we cal-
culate the Josephson current in Sec. V.

IV. ARBITRARY THICKNESSES OF FERROMAGNETIC
LAYERS AT WEAK NONCOLLINEARITY

Consider now a more interesting case of an arbitrary
thicknesses of the ferromagnetic layers F� and F �or h, H
layers�. We restrict ourselves with the case of the parallel M
orientations in the F layer because there is no qualitative
difference between the behavior of the LRTC in the P and AP
magnetic configurations. For simplicity we assume that the
angle � is small, ��1. In this case the amplitude of the
LRTC is proportional to the small parameter �. In the zero-

order approximation only the singlet component, f̂3, and the

short-range triplet component, f̂0, with zero projection of the
total spin of Cooper pairs on the z axis are not zero. Indeed,

we will look for a solution of Eq. �2.1� in the form f̂3�x�
� f̂0�x�� f̂1�x��
cosh��x� , sinh��x��, where � is the eigen-
value.

In the ferromagnetic layers we obtain the following equa-
tions for the eigenvectors:

f̂0��2 − ��
2 � − f̂3i�F

2 cos � = 0, �4.1�

f̂3��2 − ��
2 � − f̂0i�F

2 cos � − F̂1�F
2 sin � = 0, �4.2�

F̂1��2 − ��
2 � + f̂3�F

2 sin � = 0, �4.3�

where the matrix F̂1 introduced in Eq. �3.10� describes the
LRTC. This set of equations has three eigenvalues

�1,2
2 � �F


2 = ��
2 
 i�F

2 , �3
2 = ��

2 . �4.4�
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Two of them, �F
, describe a sharp decay of the density
of Cooper pairs in the ferromagnet �in the case 
H ,h�
�T ,�� and the latter one, �� ���=1 /�LR�, is an inverse
characteristic length of decay of the LRTC in the ferromag-
net. By order of magnitude it is equal to ��

2 ��T /D, which
shows that the length �LR is rather large and does not depend
on the exchange energies h and H. Spin-orbit interaction or a
spin-dependent impurity scattering make this length
shorter18,19,53–57

�3
2 = ��

2 + �m
2 , �4.5�

where �m
−2�min
D�m ,D�sp-orb�, �m and �sp-orb are character-

istic times related to the spin-dependent impurity scattering
or spin-orbit interaction. The lengths �F


−1 also depend on �m
2

and can be found by shifting �F

2 ⇒�F


2 +�mF
2 .

It is seen from Eqs. �4.1�–�4.3� that the LRTC arises only

at nonzero � when F̂1�0. In the zero-order approximation

��=0� we should find the matrices f̂0,3 in each ferromagnetic
layer. As follows from Eqs. �4.1� and �4.2�, at �=0 only the

eigenvectors f̂0
= 
 f̂3
 corresponding to the eigenvalues
�
 can be finite.

The solution for f̂0,3 satisfying the boundary conditions in
Eq. �2.3� can be written as

f̂3�x� = �
j


�̂2AHi cosh��Hjx�cos � + �̂1BHj sinh��Hjx�sin �� ,

�4.6�

f̂0�x� = �
j

�− 1� j+1
�̂2AHj cosh��Hjx�cos �

+ �̂1BHj sinh��Hjx�sin �� �4.7�

in the H region �F layer� and

f̂3�x� = �
j


�̂2�Chj
�2� cosh��hjx̃� + Shj

�2� sinh��hjx̃��

+ �̂1�Chj
�1� cosh��hjx̃� + Shj

�1� sinh��hjx̃��� , �4.8�

f̂0�x� = �
j

�− 1� j+1
�̂2�Chj
�2� cosh��hjx̃� + Shj

�2� sinh��hjx̃��

+ �̂1�Chj
�1� cosh��hjx̃� + SHj

�1� sinh��hjx̃��� �4.9�

in the h region �F� layers�, where x̃=x−L, j=1,2 so that
�H1,2=�H
, etc.

The coefficients AHi, BHi and CHi
�1�, SHi

�1�, CHi
�2�, SHi

�2� are
found from the boundary conditions in Eq. �2.3�. We write
down here the expressions for CHi and SHi �see appendix�

AH
 = �
Sh

�2� /R
�cs;sc� , �4.10�

BH
 = �
Sh

�1� /R
�cc;ss� , �4.11�

where �
= ��h /�H�
 and R
�cs ;sc�= �cosh �h sinh �H
+� sinh �h cosh �H�
, R
�cc ;ss�= �cosh �h cosh �H+� sinh
�h sinh �H�
. The coefficients Shj

�1,2� are equal to

Sh

�1� =

�BfS

2�h


sin �; Sh

�2� =

�BfS

2�h


cos � . �4.12�

Equations �4.6�–�4.12� determine the SRC in three-layer
Josephson junction with different exchange energies in the
middle �H region� and terminal �h region� F layers. We use
Eqs. �4.6� and �4.7� for the calculation of the Josephson cur-
rent due to the SRC.

Let us turn to the calculation of the LRTC. We write the

equation for the matrix F̂1 in the h region projecting of Eq.
�2.1� on the �̂1 matrix in the spin space

�2F̂1�x�/�x2 − ��
2 F̂1�x� = − �h

2 sin � · f̂3�x� , �4.13�

where the function f̂3�x� in rhs is given by Eq. �4.8�.
The solution of Eq. �4.13� can readily be obtained �see

appendix�. In the H region the function F̂1�x� obeys the same
equation but without the rhs ��=0�. The solution in this re-
gion has the form of Eq. �3.12�,

F̂1 = Â1H cosh���x� + B̂1H sinh���x� . �4.14�

In order to calculate the Josephson current IJ we need to

know the coefficients Â1H and B̂1H. Considering the symmet-
ric case, �r=�l=�, we obtain �see appendix�

Â1H = �̂2A1H cos �, B̂1H = �̂1B1H sin � , �4.15�

where

A1H sinh �� = i sin � �
j=1,2

�− 1� j+1Shj
�2�

� ��hj

��
cosh �h�

sinh �Hj

Rj�cs;sc�
− 1�

+ sinh �h�

� j cosh �Hj

Rj�cs;sc� � , �4.16�

B1H cosh �� = i sin � �
j=1,2

�− 1� j+1Shj
�1�

� ��hj

��
cosh �h�

cosh �Hj

Rj�cc;ss�
− 1�

+ sinh �h�

� j sinh �Hj

Rj�cs;sc� � , �4.17�

where ��=��L, �h�=��Lh, and �Hj =�HjLH ��1,2=�
�. The
functions Rj�cs ;sc� and Rj�cc ;ss� are defined in Eqs. �4.10�
and �4.11�.

In the limit of thin h layers ���h
��1�, we see that the
products A1H sinh �� and B1H cosh �� agree with the coeffi-
cients A1 and B1 in Eq. �3.13�. This means that the amplitude
F1 of the LRTC goes to zero at Lh→0. On the other hand, it
is seen from Eqs. �4.16� and �4.17� that at ��h
��1, the
functions Rj are exponentially large and therefore the ampli-
tude of the LRTC decreases with increasing the thickness Lh.

V. JOSEPHSON CURRENT

Using the Green’s functions, f̂0,1,3 obtained in Secs. III
and IV one can now calculate the dc Josephson current. Sub-
stituting the expansion Eq. �2.2� into Eq. �2.5�, we obtain for
the Josephson current density
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jJ = i��T �
��0

Tr
�̂3� f̂0 � f̂0/�x + f̂3 � f̂3/�x + f̂1 � f̂1/�x�� .

�5.1�

The first two terms in Eq. �5.1� are the contribution from

the SRC � f̂0,3� and the third term is due to the LRTC

� f̂1= �̂3F̂1�. The part of the Josephson current density which
is caused by the SRC, jcSR, can be written also in the form

jJSR = i
�

2
�T �

��0
Tr
�̂3� f̂+ � f̂+/�x + f̂− � f̂−/�x�� , �5.2�

where f̂
= f̂0
 f̂3 are the diagonal matrix elements in spin
space. The part of the Josephson current density which is
caused by the LRCT, jcLR, can be presented as

jJLR = − i��T �
��0

Tr
�̂3�F̂1 � F̂1/�x�� . �5.3�

We use these formulas for the calculation of the critical
Josephson current in the limiting cases �a� and �b�.

A. Thin F� layers

Consider the limit of thin F� layers. Substituting Eq. �3.6�
into Eq. �5.2�, we obtain

jJSR = i
�

2
�T �

��0
Tr
�̂3��+Â+B̂+ + �−Â−B̂−�� . �5.4�

With the help of Eq. �3.8� this expression can written in
the form

jJSR = jcSR sin�2�� , �5.5�

jcSR = ��B
2�T �

��0
fS

2 1

D+
+

1

D−
� . �5.6�

Using Eq. �3.9�, we find the critical current density due to the
SRC for the P and AP magnetic configurations

jcSR,P = ��B
22�T �

��0
fS

2 Re� 1

�+ sinh�2�H+�� , �5.7�

jcSR,AP = ��B
22�T �

��0
fS

2 1

2 Re��+ sinh �H+ cosh �H−�
.

�5.8�

These formulas show that the critical current density jcSR
decays exponentially with increasing the length LH over a
short scale of the order �H. The decrease in the current den-
sity jcSR,P with increasing the thickness LH or exchange en-
ergy H is accompanied by oscillations.17–19 Oscillations in
the dependence jcSR,AP�LH ,H� are absent in the case of anti-
parallel orientations. The latter behavior was predicted by
Blanter and Hekking58 who considered antiparallel orienta-
tion of magnetization in ferromagnetic domains in a SFS
Josephson junction and presented formula for jcSR,AP in the
limit �H+�1. Equation �5.8� generalizes Eq. �26� of Ref. 58
for the case of arbitrary �H
, i.e., arbitrary LH. A rapid decay

and oscillations of the critical Josephson current in SFS or
SIFS junctions were observed in many experimental
works.59–70 This oscillatory behavior was predicted a few
decades ago.71,72

In Figs. 2�a� and 2�b� we show the dependence of the
normalized critical currents density IcSR� jcSR
�h ,H ,LH� / jc�0,0 ,LH� originating from the short-range com-
ponent �the components f0,3� on the thickness of the H-layer
LH and temperature for the P and AP magnetization orienta-
tions. The plots are obtained on the basis of Eqs. �5.7� and
�5.8� applicable in the case of thin h layers. We see that in
the case of the P orientation the critical current density jcSR
caused by the SRC changes sign with increasing LH, while in
the case of the AP orientation the current jcSR is always posi-
tive. However, at a fixed LH the current density jcSR decays
monotonously with increasing temperature. For a smaller ex-
change energy the dependence jcSR�T� has another form and
may change the sign �see the next section�.

Note that the critical current for the AP orientation IcSR,AP
is always larger that for the P orientation. The critical current
IcSR,AP in an SFIFS Josephson junction with the antiparallel
magnetization orientation in the F layers may be even exceed
the critical current in SIS junction without the F layers pro-
vided that the coupling between S and F layers is strong
enough �here I stands for an insulator�.18,73

The Josephson current jJLR due to the LRTC is found
using Eqs. �5.3�, �3.12�, and �3.13�. We obtain

jJLR = i��T�1
2 sin �r sin �l �

��0

Tr
�̂3 f̂3�LH� f̂3�− LH��
�� sinh�2�H��

.

�5.9�

The matrices f̂3�
LH� are expressed in terms of the ma-

trices f̂
�
LH�: f̂3�
LH�= � f̂+�
LH�− f̂+�
LH�� /2. Using
Eqs. �3.6� and �3.7�, we find that jJLR= jcLR sin�2��. The
critical current jcLR in the case of the P and AP orientations is
given by

jcLR,P = − 4��B
2�1

2 sin �r sin �l�2�T�

� �
��0

fS
2

�� sinh�2�H��
Re P1 · Re P2, �5.10�

jcLR,AP = − ��B
2�1

2 sin �r sin �l�2�T�

� �
��0

fS
2

DAP
2 �� sinh�2�H��

�P3
2 − 1� , �5.11�

where P1=cosh2 �+ /D+, P2=sinh2 �+ /D+, P3= �cosh �+�2�1
+ �tanh �+�2Re��+ /�−��, D+, and DAP�DAP+=DAP− are de-
fined in Eq. �3.9�. Equation �5.10� resembles Eqs. �10� and
�12� of Refs. 45 and 46, respectively. Comparing Eq. �5.10�
with Eq. �10� of Ref. 46 one has to have in mind that other
boundary conditions and temperatures close to Tc are consid-
ered in that work. Note that the parameter ��1 /���
= ��hLh���h /��� may be arbitrary; we assumed that �hLh
�1, but the parameter ��h /��� is large.

In Figs. 3�a� and 3�b� we plot the same dependencies as in
Figs. 2�a� and 2�b� for the critical current jcLR originating
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from the LRTC. This current decays monotonously with in-
creasing both the temperature and LH. Note that the critical
current jcLR has the opposite sign to jcSR,AP if sin �r sin �l
�0 and in the case of the AP configuration is always larger
than in the case of the P configuration.

In Figs. 4�a� and 4�b� we plot the most important depen-
dencies of the jcSR�T� and jcLR�T� as well as the total critical
current, jcTot= jcSR�T�+ �jcLR�T��, on the length LH for differ-
ent magnitudes of the exchange energy H. The parameter
p��r ,�l��4�1

2��
2 sin �r sin �l is taken to be equal to 0.2. The

value of H=170�0 approximately corresponds to the ex-
change energy in Co �Eex=309 meV, see Ref. 66� used in
the experiment.40 One can see that for H=70�0 and H
=170�0 the critical current is caused by the LRTC at LH

�0.5�� and at LH�0.4��, respectively, where ��=�D /�0.
The latter curve is close to the one observed in Ref. 40 pro-
vided we accept ��=10 nm corresponding to the value of
the diffusion coefficient D about 10 cm2 /s.

One can say that the obtained results are in a qualitative
agreement with experimental data.40 It is difficult to carry out
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FIG. 2. �Color online� Normalized critical current due to the SR
components, IcSR, for the parallel �P� and antiparallel �AP� orienta-
tions of magnetization in domains in the middle H layer vs the
thickness of the �a� H layer and �b� temperature. The thickness of
the h layers is assumed to be small �Lh��h�. The normalized tem-

perature T̃, exchange energy H̃, and thickness L̃H are measured in
units �0 and ��=�D /�0, where �0=��T� at T=0. The lower and
upper curves correspond to the P and AP configurations, respec-
tively. The critical current jc is measured in units of its value in a

junction with H=0 �no exchange field� and normalized length L̃H

=0.5. The point and upper thin curves correspond to H̃=70; the

lowest and upper thick curves correspond to H̃=30. The normalized

temperature �in panel �a�� and thickness L̃H �in panel �b�� are equal
to 0.1 and 0.5; the parameter �m� equals 1. The values of the

critical current corresponding to H̃=30 are reduced by ten times.
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FIG. 3. �Color online� The same dependence as in Fig. 2 for the
normalized critical current due the LRTC components, IcLR. As in
Fig. 2, the thickness of the h layers is assumed to be small �Lh

��h�. The normalization units are the same as in Fig. 2. The curves

are numbered so that: 1—AP, �H̃=30�; 2—AP �70�; 3—P �30�; and
4—P �70�.
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the quantitative comparison because our model is simplified.
We admit the standard model in which one neglects the dif-
ference in the diffusion coefficients for the major and minor
electrons in the ferromagnetic layers although this difference
in Co is large. We also assume the diffusive limit for all
layers. At the same time, the mean free path in the strong
ferromagnet �Co� seems to be larger than �H. In this case the
formula for the Josephson current even for one-layer SFS
junction becomes rather complicated.74

In addition, the conductivities in all the layers are as-
sumed to be equal whereas in experiment the conductivities
in layers �Cu, Co, and PdNi� are different. The interface re-
sistance RB, strictly speaking, is not known and can be only
estimated. However, one can see from Eqs. �5.7� and �5.8�
that both the “effective conductivity” � �averaged over all
layers� and the averaged interface resistance RB enter the

expression for the critical current density jc as a prefactor
before the sum. It disappears when we plot the critical cur-
rent normalized to its value at h=H=0. The most interesting
dependence of the critical current jc on temperature and
thicknesses Lh,H is determined by exponential functions.

We assumed that the proximity effect is weak, that is, the
amplitude of the condensate functions in ferromagnets is
small. As follows from Eq. �3.8�, this means that the param-
eter ��B /�+����Lh,H /RB�+����Lh,H /RB��1. According to
Ref. 59, where a structure similar to that in Ref. 40 �but
without strong ferromagnets� was studied, the interface resis-
tance per unit area, RB=SRSF, was equal RB=2.3
�10−8 � cm2 whereas RFS=�FLF�7k�10−12 � cm2, that
is, the ratio RFS /RB�10−4 is indeed very small, here S is the
cross-section area of the junction. Taking into account that
the resistance of the h and H �Co�—layers are comparable,
we conclude that the proximity effect in experiment40 is
weak.

As to the value of the critical current, we do not attempt
to carry out a quantitative comparison with experimental
value because it depends on the ratio ��L /RB�2= �RFS /RB�2

which is known only on the order of magnitude. In addition
to that, the Josephson junction used in experiment contains
many interfaces each of which reduces the proximity effect.

B. Arbitrary thicknesses of the F layers

In order to calculate the current density jJSR, we substitute

Eqs. �4.6�–�4.12� into Eq. �5.2� using the relations f̂0,3�x�
= � f̂+�x�
 f̂+�x�� /2. After simple calculations, we obtain for
the critical current density jcSR in the case of the P configu-
ration

jcSR = ��2�T��B
2 �

��0
Re fS

2

�H+R�cs/sc�+R�cc/ss�+
� .

�5.12�

The critical current density due to the LRTC, jcLR, for the
case of the arbitrary thicknesses Lh,H is found from Eqs.
�4.14�–�4.17� and �5.3�. For the symmetric case ��r=�l��
�1� we get

jcLR = − ��2�T��B
2�2 �

��0

fS
2

�� sinh�2���
Im�M�Im�N� ,

�5.13�

where

M =
sinh �H+ cosh �h�

R�cs/sc�+
+

�� cosh �H+ sinh �h�

�H+R�cs/sc�+
,

�5.14�

N =
cosh �H+ cosh �h�

R�cc/ss�+
+

�� sinh �H+ sinh �h�

�H+R�cc/ss�+
,

�5.15�

and ��=��h+��H. In the antisymmetric case ��r=−�l��
�1� the sign of the critical current density should be
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FIG. 4. �Color online� The dependence of the normalized critical
current due to the SR component �point line�, LRTC �solid thick
line� and the total critical current �solid thin line� on the thickness of

the H layer for �a� H̃=70 and �b� H̃=170. The normalized tempera-
ture is equal to 0.1. Other parameters are the same as in Fig. 2.
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changed. Thus, in this case the critical current has the same
sign as in SNS junction.

Using Eqs. �5.5�–�5.15�, we calculate numerically the
critical currents jcSR and jcLR for the case of symmetric case
��r=�r���1� and the P configuration. In Figs. 5�a� and
5�b� the dependence of jcSR and jcLR on temperature T is
shown for the case when the exchange energies are not very
high �H=2h=10�0� and the lengths LH,h are small �Lh
�LH=0.1���. It is seen that the current jcSR depends on T in
a nonmonotonic way and can change sign. This type of a
nonmonotonic temperature dependence was obtained in
many works, both experimental60 and theoretical �see
reviews17,19 and references therein as well as a recent
paper44�. The critical current due to the LRTC jcLR decays

with increasing T monotonously. Note that a nonmonotonic
behavior of jcLR�T� was found in Ref. 75 for a half-metallic
ferromagnet. In our model, we do not find values of param-
eters at which this dependence would not be monotonic.
However, there is no contradiction between these two results
because, as was shown recently,76 the nonmonotonic tem-
perature dependence of the critical Josephson current IcLR
takes place only for a sufficiently large exchange energy
�comparable with the Fermi energy �F�. In our study we as-
sume that both exchange energies, h and H, are small in
comparison with �F. In a recent work,77 the Josephson dc
effect was observed in a SFS junction with ferromagnetic
Cu2MnAl—Heusler alloy as a ferromagnetic layer. In the
interval of thicknesses 8�LF�10.5 nm the critical current
as a function of LF shows a very slow decay with increasing
LF, and its temperature dependence was a nonmonotonic in
this interval of LF.

In Fig. 6�a� we show the dependence of jcLR�Lh� for dif-
ferent exchange energies h setting the angle � equal to �0.1.
It is seen that the critical current caused by the LRTC has a
maximum at Lh��h, that is, the maximum shifts to smaller
�h with increasing h. The same dependence jcLR�Lh�, but for
different H, is shown in Fig. 6�b�. One can see that the po-
sition of the maximum weakly depends on H. A nonmono-
tonic behavior of the critical current as a function of LH was
observed in experiment.40

VI. DISCUSSION

We have considered the long-range triplet component in
an SF�FF�S diffusive Josephson junction with a noncollinear
magnetization M orientation in the F� and F ferromagnetic
layers. Assuming that the proximity effect is weak, we have
solved the linearized Usadel equation and found the pair
wave functions for the short-range �singlet and S=0 triplet�
and long-range components �the LRTC with �S�=1� in the
cases of different exchange fields in F� and F layers, arbi-
trary temperatures and parallel �antiparallel� M orientation in
two domains in the middle F layer.

Our study was motivated by recent experimental results
concerning the observation of the LRTC in a multilayered
�seven layers between superconductors� Josephson
junctions.40 The model used in our study, although account-
ing for the properties of the SFS junction used in the
experiment,40 is somewhat simplified. In particular, we solve
the Usadel equation in which the difference in transport
properties of the minor and major electrons in the F layers
was ignored. This approximation is rather crude especially
for strong ferromagnets �in Co the diffusion coefficients for
the minor and major electrons may differ by an order of
magnitude40�. Account for different transport properties for
electrons with up and down spins leads to a change not only
in the boundary condition in Eq. �2.3� �Ref. 34� but also in
the collision integral by potential impurities.78 The scattering
by stationary fluctuations of magnetic moments in the ferro-
magnetic layers is also taken into account in the simplest
way ignoring the spin-orbit interaction.53

Thus, the approximations taken by us do not allow a
quantitative comparison of the critical current jc measured in
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FIG. 5. �Color online� Temperature dependence of the normal-
ized critical current due to the �a� SR and �b� LRTC components for

the P orientation. The upper and lower curves correspond to h̃=5,

H̃=10 and to normalized lengths L̃h=0.1 and L̃h=0.12. The point

curve corresponds to h̃=5, H̃=10, and L̃h=0.1. The “length” L̃H

=0.1 and the parameter �m�0=0.1.
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experiment and calculated on the basis of the quasiclassical
theory within a simplified model. The formulas for jc, Eqs.
�5.7� and �5.8�, contain an effective conductivity averaged
over all layers and effective interface resistance. Even in a
simpler case of SFS junctions with a single ferromagnetic
layer it is not possible yet to obtain a quantitative agreement
between theory based on the quasiclassical theory and
experiment.59,66

Fortunately, both these parameters enter the correspond-
ing formulas as prefactors which disappear when the critical
current Ic�T ,h ,H ,Lh ,LH� is normalized to its value at h=H

=0. Therefore, the performed study allows one to understand
what kind of dependencies of the critical current Ic on dif-
ferent parameters �T ,LH ,Lh ,H ,h� can be obtained in multi-
layered Josephson SFS junction. If the magnetization in the
domains in the F layer is aligned parallel, the critical current
IcSR caused by the short-range components oscillates with
increasing the thicknesses of the F� and F layers �Lh,H�. This
behavior was predicted in Refs. 71 and 72 and observed in
many experimental works.59–66,68–70 The formulas obtained
in this paper generalize previous theoretical results for IcSR
�see reviews17–19 and references therein� to the case of dif-
ferent exchange fields in the F� and F films.

If the magnetization in domains in the F layer are antipar-
allel, the critical current IcSR decays exponentially in agree-
ment with the results of Ref. 58. In both the cases of the
parallel and antiparallel orientations the characteristic length
for the decay of IcSR is on the order of �h,H.

The critical current IcLR due to the LRTC decays in both
cases with increasing LH and T in a monotonic way on the
length on the order of �N. For certain values of parameters of
the system the total critical current Ic= IcSR+ IcLR coincides
with IcSR at small thickness of the F layer LH and with IcLR at
larger LH �see Fig. 4�. This behavior agrees with the depen-
dence Ic�LH� observed in the experiment.40

As it was predicted in Ref. 45 for a F�SFSF� system and
in Ref. 46 for a SF�FF�S system, the current IcLR has a maxi-
mum as a function of Lh at Lh��h decaying to zero at large
and small Lh. Thus, the presence of the F� layers makes the F
layer with a strong ferromagnet “transparent” for the LRTC.
Unlike previous theoretical studies, we present a formula for
the amplitude of the current IcLR for arbitrary thicknesses
Lh,H, temperatures and exchange fields h and H. This allows
one to choose optimal parameters for observing the LRTC.

However, it remains unclear how the angle dependence of
the critical jcLR��r,l� shows up in the critical current Ic ob-
served in experiment. Generally speaking, orientations of the
M vectors in F� and F films are not necessarily the same
��r,l�0�. If there are domains in the F� layers, the total
critical current Ic,Av is determined by averaging the current
density jc over the width of the junction as the magnitude
and sign of the average �sin �r sin �l	 depends on the num-
ber of domains, orientations of the magnetization M in these
domains etc. This issue requires a further theoretical and
experimental studies.
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APPENDIX

The boundary conditions for the matrices f̂0,3 follow di-
rectly from Eq. �2.3� and have the form

� f̂3/�x�x=
L = 
 �Bf̂S�x=
L, � f̂0/�x�x=
L = 0. �A1�

Substituting Eqs. �4.8� and �4.9� into Eqs. �A1�, we obtain
Eqs. �4.12�. The coefficients Ch


�1,2� are found from the match-
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FIG. 6. �Color online� �a� Normalized critical current due to the
LRTC as a function of the thickness of the h layer for different

exchange energies h for the P orientation. The parameters are: h̃
=2, 5, and 20 �solid thin, solid thick, and point lines, respectively�.
The other parameters are H̃=50, T̃=0.25, �m�=0.1, and L̃H=0.5.

�b� The same dependence for different H̃: H̃=5 �thin solid curve�,
H̃=20 �thick solid curve�, and H̃=100 �point curve�. The parameter

h̃=5. Other parameters are the same as in Fig. 6�a�. All the curves
correspond to the P orientation.
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ing conditions of the functions f̂0,3�x� and their derivatives at
x=LH. They equal

Ch

�1� = Sh


�1� R
�sc/cs�
R
�cc/ss�

; Ch

�2� = Sh


�2� R
�ss/cc�
R
�cs/sc�

. �A2�

Equations �4.8�, �4.12�, and �A2� determine the form of the

function f̂3�x� in Eq. �4.13�. The solution for Eq. �4.13� is
given by the formula

F̂1�x� = F̂1un�x� + F̂1nun�x� , �A3�

where F̂1un�x� and F̂1nun�x� are solutions of a homogeneous

Eq. �4.13� �without the rhs� and F̂1nun�x� is a particular solu-
tion of this equation. These functions are

F̂1un�x� = �̂2�a�2� cosh���x̃� + b�2� sinh���x̃��

+
�̂1�a�1� cosh���x̃� + b�1� sinh���x̃��� , �A4�

F̂1nun�x� = sin � �
j=1,2

i�− 1� j

���̂2Shj
�2�Rj�ss/cc�

Rj�cs/sc�
cosh��hjx̃� + sinh��hjx̃��

+ �̂1Rj�sc/cs�
Rj�cc/ss�

cosh��hjx̃� + sinh��hjx̃��� .

�A5�

Matching �A3�–�A5�, we find finally the matrices âH and b̂H,
Eqs. �4.16� and �4.17�.
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